

Intelligent Products

Kary Främling

BIT Research Centre

Aalto University, School of Science and Technology, Finland

Tracking with ID@URI

Industrial pilots performed 2002, 2003 in multi-organisational and international context

Accessing product information with ID@URI

Internet of Things?

PROMISE connectivity

- PROMISE Messaging Interface (PMI) for intersystem communication
- PMI can be implemented by devices directly or through a PMI-compliant middleware
 - Device Controllers (DC) communicate with devices that cannot implement PMI
- UPnP-enabled devices can use PROMISE CorePAC interface for DC
- Other devices can use proprietary DCs

PROMISE Messaging Interface

- Read and write operations supported
- Subscriptions are used for requesting sensor value feeds, for receiving alarms etc.
- Authorized parties can request each other for information when needed and as long as needed
- Example of a subscription message:

```
<?xml version="1.0" encoding="UTF-8"?>
<pmiEnvelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../pmiSchema.xsd"</pre>
type="readData" version="0.8">
<readRequest ttl="1000" interval="-1" wsCallBack="http://dialog.hut.fi/pmi/services/pmi" requestTargetType="device">
               <targetDevices>
                              <targetDevice>
                                             <ids>
                                                             <id>Refrigerator 001</id>
                                             </ids>
                                             <infoltems>
                                                             <infoltem>
                                                                            <id>freezerDoorWarning</id>
                                                                            <id>powerConsumption</id>
                                                             </infoltem>
                                             </infoltems>
                              </targetDevice>
               </targetDevices>
</readRequest>
```


Hardware for connecting to car's Engine Control Unit (ECU)

"Sufficiently new" car with OBD-II capability

OBD-II to RS-232 converter

Car demonstration with OBD-II and UPnP/CorePAC

Accessing Engine Control Unit over Bluetooth

Bluetooth connection established

Check Engine status and Diagnostic Trouble Codes fetched

Standard Bluetooth module for wireless connectivity

- All information can be sent to remote nodes over PMI
- Subscriptions for more information could be sent to the mobile phone if needed

"Intelligent" refrigerator

Currently ongoing projects

OptiMach:
Vehicle brand-independent Fleet Management
(Near) Real-time data acquisition from vehicles: GPS, engine running or not, speed, driving style,
First pilots up and running with industrial partners
Building Automation projects:
□ Remote monitoring of buildings (energy consumption, indoor climate, water consumption,)
Joint control of different building systems
☐ User interfaces of many kinds, including Near Field Communication (NFC)
Use of RFID for SCM of technical wholesalers in Finland
Under preparation:
 Use of RFID and information system interoperability in post-disaster management
Implementation of Auto-ID ecosystem for tagging-based applications

RFID tag versus Intelligent Product?

or

Intelligent Product?

RFID tag?

- → Should it matter for the Information Architecture?
- → Where does logistics end and PLM start?

