How does a passive tag auto id system work (really)?

Electronic labelling. Read/Write features.
The ISO Standards. The ISO-RFID-TAG-X.

Harald.Oehlmann@Elmicron.de

Contents

• RF-ID Tags
 • Readers
 • Physics, Anti-collision
 • Tag data for returnable container
 • AFI tag data structure
 • Where are we now?
 • Conclusions

RF-ID Tag technology is engineering
RF-ID Tag

Data storage media with radio connection and radio power transmission

4 functions of an RF-ID Tag:

- Data Storage
- Power reception
- Data reception (write to tag)
- Data emission (read from tag)
Components of the RF-ID Tag

Focus now: 898MHz foil RF-ID Tags – ISO18000-6

Antenna

Dipole
Backscatter -> electromagnetic field
Serves 3 purposes:
 • Energy transmission
 • Data reception
 • Data emission

• IC – Integrated Circuit
 • both ends of antenna connected to IC
 • Size < 1mm²
 • All functions included

Tag inlay covered with paper (smart label)
Tag reader

Communication partner of RF-ID tags.

- Establishes a stationary field of fix frequency 980MHz (energy).

- Reads and writes Data to/from RF-ID tag.

Main visible component: Antennas
Tag Function 1: Energy reception
Tag function 2: Data reception

Cmd: Send memory block 2, bit 0 to 64

Date rate: up to 40kBit/s
Data transmission to all tags in field simultaneously
Tag function 3: Data emission

Cmd reply: Sending memory block2, bit 0 to 64

Reflecting the wave (Sending)

Tag to reader: 160 kBit/s max

Oscillator in short-circuit state:
 • no energy consumption (reflection) of the tag
 • Reader receives reflected wave
 • Reception only possible, if only one tag talks -> Anti-Collision
Anti-Collision

Capability to communicate with multiple tags in the reader field.

All tags receive power and commands simultaneously.

Problem to solve
If multiple tags are sending data:
- reader detects only collision
- reader does not receive any data.

→ Anti-Collision methods
(a) ALOHA, (b) Binary Tree,
(c) slotted random
Anti-Collision – unique tag ID

Necessary to address tag directly

If reader knows tag ID it may communicate only with this tag

Tag ID: ISO 15963

Technology-Independent tag-id standard:

<Org><Manufacturer><Serial number>

Tag ID example:

E0170B01AA000CD8

Organisation:

E0: ISO/IEC7816-6/AM1

E2: EPCglobal

<table>
<thead>
<tr>
<th>E0</th>
<th>E0 + 0D Mitsubishi</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Motorola</td>
</tr>
<tr>
<td>02</td>
<td>STM</td>
</tr>
<tr>
<td>03</td>
<td>Hitachi</td>
</tr>
<tr>
<td>04</td>
<td>Philips</td>
</tr>
<tr>
<td>05</td>
<td>Infineon</td>
</tr>
<tr>
<td>06</td>
<td>Cylinc</td>
</tr>
<tr>
<td>07</td>
<td>TI</td>
</tr>
<tr>
<td>08</td>
<td>Fujitsu</td>
</tr>
<tr>
<td>09</td>
<td>Matsushita</td>
</tr>
<tr>
<td>0A</td>
<td>NEC</td>
</tr>
<tr>
<td>0B</td>
<td>Oki</td>
</tr>
<tr>
<td>0C</td>
<td>Toshiba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E0 + 0E Samsung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0F Hyundai</td>
</tr>
<tr>
<td>10 LG</td>
</tr>
<tr>
<td>11 Emosyn</td>
</tr>
<tr>
<td>12 Inside</td>
</tr>
<tr>
<td>13 Orga</td>
</tr>
<tr>
<td>14 Sharp</td>
</tr>
<tr>
<td>15 Atmel</td>
</tr>
<tr>
<td>16 EM</td>
</tr>
<tr>
<td>17 KSW</td>
</tr>
<tr>
<td>19 XICOR</td>
</tr>
</tbody>
</table>
Anti Collision – Example Overview

Tag 1
ID: 1000h

Tag 2
ID: 1002h

Tag 3
ID: 1012h

Reader

Last Digit = ?

1000 % Collision % % % % % % % % % % %

Last Digit = 2
For last Digit = ?

1002 1012 % % % % % % % % % % % % % %
Anti-Collision – Pre-selection on application family (AFI)

Pre-select group of RF-ID tags

EPC/AFI

Example: Flight baggage
⇒ Ignore any other tags like goods

Advantage: Faster Anti-Collision

AFI: Application family identifier
Byte which composes into two sub-fields:
• Application family
• Application Subfamily

• 1 Transport
• 2 Financial
• 3 Identification (Access control)
• 4 Telecommunication
• 5 Medical
• 6 Multimedia
• 7 Gaming
• 8 Data Storage
• 9 EAN.UCC System (AI's) (Retail)
 • 9-? ?EPC?
• 10 ASC (DI's)
 • 10-1 Items
 • 10-2 Transport units
 • 10-3 Returnable containers
• 11 UPU (Universal Postal Union)
 • 11-1 Items
 • 11-2 Transport units
 • 11-3 Returnable containers
• 12 IATA
 • 12-1 IATA Baggage Tag
Summary:

• Standards: ISO/IEC18000-6c

• Anti-Collision using Unique ID for up to 200 tags.

 • Reading distance: up to 8m, may be restricted by local power limitations.

 • Spot-light shaped reading zone: stack of readers to increase performance
Tag data for returnable container

- **Unique ID:** Composed of: Issuer, container
 - Container Type: **KLT1521**
 - Additional data: current contents

How?
- Compatible to present Bar Code to be compatible to present infrastructure

 ISO15459-5 Returnable Container
 - 25B**ODABCDQQD184AC+B**KLT1521
 (registered Odette issuer)
 - 25B**UN123456789QQD184AD+B**KLT1521
 (registered DUNS issuer)
 - **FNC1800312345671234567QQD184AE**
 (registered GS1 issuer using EAN128 data structure (Global Returnable Asset ID))
RFID Data Structure

AFI Structure

- All Bar-Code versions may be represented
 - Additional data welcome
 - (Use tag as portable data base)

EPC Structure

- Tag data is a database pointer (GRAI)
 (Only some GRAI can be represented)
- Other data should be held in the EPC framework (set of worldwide data bases)

Data on Tag

Data on Network
ISO (AFI) RFID tag data structure

- RFID tags advanced features:
 - Writeable
 - Big memory
 - Read without view
- How to extend present systems with RFID tags?
 - Compatible RFID data structure
 - ISO/IEC15961
ISO/IEC15961 & ISO/IEC15962 Overview

Application

Reader

Radio Link

RF-ID tag

Cmd: Write field
Data: JLHEDMG12
Ok
Serial Line etc.

Memory Map

Unique ID

AFI

DSFID

tag image (partly known)

Application Interface

Data Formatting/Extraction

ISO 15961

ISO/IEC 15962

Air Interface

ISO 18000-X

Tag memory with formatted data
ISO/IEC15961 & ISO/IEC15962

Features

• Compatible to other material handling data structures
• Treats ASC/EAN128 transparently
• Defines commands read/write
• Select tags suited to my application quickly
• Fast access on key fields "What is your transport unit?"
• Fast access on arbitrary fields
ISO/IEC15961: Conversion to Abstract Syntax Notation One (ASN.1)

- Definition of commands: write field, read field,...
 Commands and data on one wire
- Identifiers are organised in a tree covering ASC, EAN128, ...
- Example:
 ASC 1H → (40 248 74 6) 39
 40 248 74 6: ISO15434-6
 39: 1H

ASN.1 identifier tree (OID)
ISO/IEC15962: - Memory organisation

Sequential

1. ID 1
2. Data 1
3. ID 2
4. Data 2
5. ID n
6. Data n
7. Free space for additional fields

Directory

1. ID 1
2. Link 1
3. ID 2
4. Link 1
5. ID n
6. Link n
7. Free for fields
8. Data n

- **Very quick access on first field**
- **Access speed decreases for each field**
- **Less memory usage than directory method**

Quick access on any field
- **Directory may be buffered or fix for the application**
Where are we today?

ISO17364: Supply chain applications of RFID – Returnable transport items (RTIs)

Next Step: CEN TC225 3th of may in Brussels
Conclusions

→ Data structures of automatic-identification: ASC, EAN128, Transfer Syntax, ISO-RFID Tag

• Type information is added to the data for the information system
• World wide uniqueness is achieved using labeler IDs.
• ISO Standards guarantee communication within branches.
• Data structures may be transmitted by different media independent of the data structure.

→ RF-ID Tag data structures establish compatibility within tags and to barcode.

• Usable standard 15961/15962 ready for use.
• Complex ? That’s normal, it is RF-ID !